

Climate Resilient Development Pathways (CRDP): Evidence Base

Activity Name and Code: Climate Resilient Development Pathways,

SP15-002

CRIDF Deliverable #: D06

Version: Final

March 2017

Quality Assurance Checklist

In preparing this document CRIDF can confirm that it has followed CRIDF's internal general procedures, including appropriate CRIDF generic scope of work and that it has undergone appropriate quality assurance (QA) and quality control (QC) procedures as detailed in CRIDF's QA manual. Furthermore, CRIDF can confirm the applicable specific internal process and procedures have been followed including:

- CRIDF's Cost Benefit Assessments (CBAs) guideline have been applied as appropriate;
- CRIDF's Gender Equality and Social Inclusion (GESI) guidelines have been applied as appropriate;
- CRIDF's Climate vulnerability mapping methodology has been applied as appropriate;
- CRIDF's Climate Change Risk Assessment (CCRA) protocol have been applied as appropriate;
- CRIDF's Procurement guidelines have been followed as appropriate;
- CRIDF's Screens as appropriate.

Lead Author(s) Signature	Dimple Roy	CRIDF QA'd:	Previlage Chidzewere	CRIDF QC'd:	Jeremy Richardson	CRIDF Approved	Charles Reeve
Date:	06/03/2017	Date:	07/03/2017	Date:	07/03/2017	Date:	10/03/2017

Disclaimer

The British Government's Department for International Development (DFID) financed this work as part of the United Kingdom's aid programme. However, the views and recommendations contained in this report are those of the consultant, and DFID is not responsible for, or bound by the recommendations made.

CRDP Evidence Base Page 2 of 8

Table of Contents

Vulnerability and Adaptive Capacity in the Cubango-Okavango River Basin (CORB) 4

List of Tables

Table 1 Past and current vulnerability in key sectors within the Cubango-Okavang	o River Basin
(illustrative)	5
Table 2 Past and current adaptive capacity within the Cubango-Okavango River Bas	in (illustrative)
	6

CRDP Evidence Base Page 3 of 8

Vulnerability and Adaptive Capacity in the Cubango-Okavango River Basin (CORB)

Changing Climate in Southern African

Since 2000, countries in Southern Africa have experienced an increase in the frequency, magnitude and impact of drought and flood events. Climate change is expected to significantly affect the region and increase risks related to water resources, wildfires, and agriculture and food security. (SADC 2012). A changing climate impacts not just individual sectors, but multiple, interlinked sectors in the Cubango-Okavango River Basin (CORB). For instance, the annual floods of 2009, 2010 and 2011 all reached extents last seen decades ago. These caused deaths, flooded villages and houses, blocked and destroyed infrastructure and interrupted water and electricity (FAO, 2014).

Vulnerability to Climate in the Cubango-Okavango Basin

Vulnerability to climate change is generally understood to be a function of a system's *exposure* to climate change impacts, *sensitivity* to these impacts, and its *adaptive capacity*—or the ability of a system to adjust to change, to moderate potential damage, to take advantage of opportunities, or to cope with the consequences (see Figure 1). As such, the vulnerability of the Okavango Basin to climate change is determined by a combination of climatic and non-climatic factors, and both need to be taken into consideration when developing climate resilient development pathways.

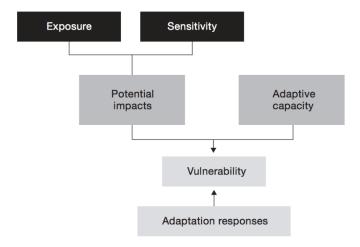


Figure 1: Representation of the components of vulnerability to climate change and their interlinkages (Allen Consulting reported in Bizikova et al. 2009)

CRDP Evidence Base Page 4 of 8

Table 1 Past and current vulnerability in key sectors within the Cubango-Okavango River Basin (illustrative)

Sector	Potential impacts of climate change		
Water (quantity and	Observed long-term declines in total annual precipitation, affects		
quality)	water use particularly in the arid regions of Botswana and Namibia.		
	Changing sedimentation dynamics have had impacts on the delta		
	ecosystem and ecosystems services.		
Agriculture	Drier conditions are resulting in decline in production of maize,		
(communal and	mahango and potential for rice.		
commercial)	Shifts in the growing season		
	Increasing exposure to pests, diseases and invasive species such as		
	armyworms are already impacting regional food security and trade.		
Economy	Lower crop yields impacts on crop prices and food security		
	Increasing pressures on relief programs (flood/drought		
	compensation)		
	Infrastructure stress and damage particularly in extreme events		
	impact economic resources		
	Conflict between formal and informal economies such as in the		
	case of increasing tourism as agricultural production declines		
Wildlife and	Changes in wildlife population with positive and negative		
biodiversity	ecological and socio-economic impacts		
	Increasing human-wildlife conflicts, especially near permanent		
	river water courses		
Tourism	Extreme events increase operating costs due to infrastructure		
	damage		
	The Okavango delta and its biodiversity is most sensitive to		
	climatic variability and underpins the region's thriving tourism		
	industry.		
Social equity and	Existing inequity between and within riparians		
justice	Development investment between formal and informal sectors		
Forestry, resource	Change in wildland fire dynamics		
harvesting	Reduced inflow to the delta could lead to the drying of wetlands		
	and changes to ecosystems and ecosystem services;		
	Resource related conflicts between informal and formal sectors		
Fishing	Increased variability in fish population under increasingly climate		
	variability		
Livestock	Decreased availability of forage under hotter and drier conditions		
	and greater risk of over grazing		
	Need to consider the composition of livestock herds		

CRDP Evidence Base Page 5 of 8

Infrastructure	Greater cost of damage to infrastructure as flood events become more frequent
	Low levels of infrastructure impede development efforts
Governance	Slow integration of basin-wide systems in national planning and decision-making
Health	Increased risk of malaria and other diseases
Water-energy-food nexus	Changing hydrology impacting multiple interlinked sectors and systems
	Increased emphasis on agriculture, for example, leading to an
	increased need for irrigation (water and energy) and needs for
	energy and infrastructure for processing.

Adaptive Capacity in the Cubango-Okavango Basin

Adaptive capacity in turn is determined by six main factors as described by the IPCC (2001). A brief, illustrative summary of key aspects of existing adaptive capacity are provided in Table 2 below.

Table 2 Past and current adaptive capacity within the Cubango-Okavango River Basin (illustrative)

Adaptive Capacity	Existing elements in the Okavango Basin
Component	
Economic resources	Development assistance from World Bank and other agencies
	Extractives based economies without adequate diversity.
	Government subsidies, insurance programs and support in parts of
	the basin.
Technology	Water conservation, recycling, desalination etc. in arid parts of CORB
	Improvements in flood early warning systems
Information and	Accessible, long-term consistent data on climate, water, land and
Skills	related socio-economic systems a barrier to understanding trends and
	responding in best possible way.
Infrastructure	Acknowledgement of role of natural infrastructure but significant
	ongoing threats
	Lacking built infrastructure (such as roads) in highly rural settings
	causing difficulties with access to markets.
Institutions	OKACOM providing forum for reconciling development and basin
	management needs.
	All riparians have created national action plans based on Basin SAP.

CRDP Evidence Base Page 6 of 8

	•	Some history of tensions and lack of clear authority structures
		between government, communities, and traditional authorities.
Equity	•	Inequity pronounced in all three riparian countries, especially in terms
		of large levels of unemployment/underemployment.
	•	Insecurity of tenure arrangements in parts of the basin.
	•	Inequity between groups in access to natural resources.

CRDP Evidence Base Page 7 of 8

CRIDF

CRDP Evidence Base Page 8 of 8